# @unwriter is on PowPing!

PowPing is a place where you can earn Bitcoin simply by socializing, for FREE.
Never tried Bitcoin? It's OK! Just come, socialize, and earn Bitcoin.

# Team PowPing

Total Economy: 0.43 USD

# Math Blogging

## A TeX component comes to Powpress

Now you can use TeX components in Powpress to write mathematical expressions. To use this feature:

1. Click the "TeX" button to insert a TeX editor block
2. Type in a TeX expression
3. Save

To check out the supported functions, please check the manual here. Here are some examples:

\begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}

\left(\!
\begin{array}{c}
n \\
r
\end{array}
\!\right) = \frac{n!}{r!(n-r)!}
$\left(\! \begin{array}{c} n \\ r \end{array} \!\right) = \frac{n!}{r!(n-r)!}$

k = a + \cfrac{1}{b
+ \cfrac{1}{c
+ \cfrac{1}{d
+ \cfrac{1}{e
+ \cfrac{1}{f
+ \cfrac{1}{g
+ \cfrac{1}{h
+ \cfrac{1}{i
+ \cfrac{1}{j} } } } }}}}}
$k = a + \cfrac{1}{b + \cfrac{1}{c + \cfrac{1}{d + \cfrac{1}{e + \cfrac{1}{f + \cfrac{1}{g + \cfrac{1}{h + \cfrac{1}{i + \cfrac{1}{j} } } } }}}}}$

\sqrt[n]{1+x+x^2+x^3+\dots+x^n}
$\sqrt[n]{1+x+x^2+x^3+\dots+x^n}$

\left(\frac{1}{\sqrt{x}}\right)
$\left(\frac{1}{\sqrt{x}}\right)$

z = \overbrace{
\underbrace{x}_\text{real} + i
\underbrace{y}_\text{imaginary}
}^\text{complex number}
$z = \overbrace{ \underbrace{x}_\text{real} + i \underbrace{y}_\text{imaginary} }^\text{complex number}$

u(x) =
\begin{cases}
\exp{x} & \text{if } x \geq 0 \\
1       & \text{if } x < 0
\end{cases}
$u(x) = \begin{cases} \exp{x} & \text{if } x \geq 0 \\ 1 & \text{if } x < 0 \end{cases}$

x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}}
$x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + a_4}}}$

\lim_{x\to 0}{\frac{e^x-1}{2x}}
\overset{\left[\frac{0}{0}\right]}{\underset{\mathrm{H}}{=}}
\lim_{x\to 0}{\frac{e^x}{2}}={\frac{1}{2}}
$\lim_{x\to 0}{\frac{e^x-1}{2x}} \overset{\left[\frac{0}{0}\right]}{\underset{\mathrm{H}}{=}} \lim_{x\to 0}{\frac{e^x}{2}}={\frac{1}{2}}$

f(x) = a x^2+b x +c
$f(x) = a x^2+b x +c$

\frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x).
$\frac{d}{dx}\left( \int_{0}^{x} f(u)\,du\right)=f(x).$

e^{ \pm i\theta } = \cos \theta \pm i\sin \theta
$e^{ \pm i\theta } = \cos \theta \pm i\sin \theta$
hammerbrook tipped:
venezia tipped:
pete tipped:
joe tipped:
johngalt tipped:
Wow.. used that about 25y ago. Nice
Now you can write Bitcoin Whitepaper with Powpress.
miggy replied:
Hey, that is very cool my man! Good job.
hv_ replied:
How about data plotting / charts?